The f_{DS} Puzzle

Andreas S. Kronfeld

Beyond the Standard Model: From the Tevatron to the LHC Fermilab, September 15–19

based on (and extending) Dobrescu & ASK, PRL 100, 241802 (2008) [arXiv:0803.0512 [hep-ph]]

Outline

- Conventional wisdom
- The f_{Ds} puzzle
- ullet New physics: W', charged Higgs, leptoquarks
- Semileptonic decays
- Conclusions

Leptonic Decay

• Standard branching fraction for $D_s \rightarrow l \nu$ is

$$B(D_s \to \ell
u) = rac{m_{D_s} au_{D_s}}{8\pi} f_{D_s}^2 |G_F V_{cs}^* m_\ell|^2 \left(1 - rac{m_\ell^2}{m_{D_s}^2}\right)^2$$

where the decay constant f_{Ds} is defined by

$$\langle 0|\bar{s}\gamma_{\mu}\gamma_{5}c|D_{s}(p)\rangle=if_{D_{s}}p_{\mu}$$

• Usually experiments quote f_{Ds} .

Semileptonic Decay

• Standard differential rate for $D \rightarrow K\mu\nu$ is

$$\frac{d\Gamma}{dq^2} = \frac{m_D^3 G_F^2 |V_{cs}|^2}{192\pi^2} \left[PS_+ |f_+(q^2)|^2 + \frac{m_\mu^2}{m_D^2} PS_0 |f_0(q^2)|^2 \right]$$

where the form factors are defined by

$$\langle K(k)|ar s\gamma^\mu c|D(p)
angle=(p+k)^\mu_\perp f_+(q^2)+q^\mu f_0(q^2),$$
 and $q\cdot(p+k)_\perp=0.$

• Experiments quote either $|V_{cs}|$ or $f_+(0)$.

- Standard decay amplitudes are tree-level, W-mediated.
- Non-Standard amplitudes would have to be large to be noticeable.
- Non-Standard models are popular only if they are predictive, hence constrained.
- New physics is implausible, so hlv are used to determine CKM, and lv to test latQCD.

But something funny happened ...

a 3.8 σ discrepancy, or $2.7\sigma \oplus 2.9\sigma$.

With CLEO's (our) update from FPCP (Lat08)...

a 3.5 σ discrepancy, or 2.9 $\sigma \oplus$ 2.2 σ .

Experiments

- Measurements by BaBar, CLEO, Belle do not depend on models* for interpretation of the central value or the error bar.
- CLEO and Belle have absolute $B(D_s \rightarrow l\nu)$.
- Hard to see a misunderstood systematic.
- Could all fluctuate high?
- * except the Standard Model!

Last CLEO-c Event

$$e^+e^-
ightarrow D_S^{*+}D_S^ \gamma D_S^+$$
 $K^-K_S
ightarrow K^-\pi^+\pi^ K^+K^-\pi^+\pi^+\pi^-$

CKM

- Experiments take $|V_{cs}|$ from 3-generation unitarity, either with PDG's global CKM fit or setting $|V_{cs}| = |V_{ud}|$. No difference.
- Even *n*-generation CKM requires $|V_{cs}| < 1$; would need $|V_{cs}| > 1.1$ to explain effect.

Radiative Corrections

- Fermi constant G_F from muon decay, so its radiative corrections implicit in $\mu\nu$ and $\tau\nu$.
- Standard treatment [Marciano & Sirlin] has a cutoff, set (for f_{π}) to m_{ρ} . Only 1–2%.
- More interesting is $D_s \to D_s^* \gamma \to \mu \nu \gamma$, which is *not* helicity suppressed. Applying CLEO's cut 1% for $\mu \nu$ [Burdman, Goldman, Wyler].
- Only 9.3 MeV kinetic energy in $D_s \rightarrow \tau \nu$.

Elements of HPQCD

- Staggered valence quarks
 - HISQ (highly improved staggered quark) action;
 - discretization errors $O(\alpha_s a^2)$, $O(a^4)$;
 - absolutely normalization from PCAC;
 - less taste breaking;
 - tiny statistical errors: 0.5% on f_{Ds} .

- 2+1 rooted staggered sea quarks:
 - Lüscher-Weisz gluon + asqtad action;
 - discretization errors $O(\alpha_s a^2)$, $O(a^4)$;
 - discretization errors cause small violations of unitarity, controllable by chiral perturbation theory.
- Combined fit to a^2 , m_{sea} , m_{val} dependence: not fully documented, but irrelevant for f_{Ds} .

 m_K and m_{π} set m_S , m_q charmonium sets m_c

 m_K and m_{π} set m_s , m_q charmonium sets m_c

Assuming flat in m_{sea} .

As the lattice gets finer, the discrepancy grows:

Tuesday, September 16, 2008

linear in a^4 : 245.

If m_c (set from η_c) were retuned to flatten this, f_{Ds} (at $a \neq 0$) would not change much.

Error Budget

$$\Delta_q = 2m_{Dq} - m_{\eta c}$$

	f_K/f_{π}	f_{K}	f_{π}	f_{D_s}/f_D	f_{D_s}	f_D	Δ_s/Δ_d
r_1 uncerty.	0.3	1.1	1.4	0.4	1.0	1.4	0.7
a^2 extrap.	0.2	0.2	0.2	0.4	0.5	0.6	0.5
Finite vol.	0.4	0.4	0.8	0.3	0.1	0.3	0.1
$m_{u/d}$ extrap.	0.2	0.3	0.4	0.2	0.3	0.4	0.2
Stat. errors	0.2	0.4	0.5	0.5	0.6	0.7	0.6
m_s evoln.	0.1	0.1	0.1	0.3	0.3	0.3	0.5
m_d , QED, etc.	0.0	0.0	0.0	0.1	0.0	0.1	0.5
Total %	0.6	1.3	1.7	0.9	1.3	1.8	1.2

charmed sea $\ll 1\%$?

Other Results

what	expt	HPQCD	
$m_{J/\psi}-m_{\eta c}$	118.1	III ± 5 [‡]	MeV
m_{Dd}	1869	1868 ± 7	MeV
m_{Ds}	1968	1962 ± 6	MeV
Δ_s/Δ_d	1.260 ± 0.002	1.252 ± 0.015	
f_{π}	130.7 ± 0.4	132 ± 2	MeV
f_{K}	159.8 ± 0.5	157 ± 2	MeV
f_D	205.8 ± 8.9*	207 ± 4	MeV

^{*}CLEO new [‡]annihilation corrected

BSM

- If measurement, radiative corrections, and the SM calculation are in order ...
- ... the discrepancy could stem from non-Standard physics.
- How wacky could it be?
- It turns out particles that are already being considered can do the trick.

Effective Lagrangian

• The new particles will be heavy. Write

$$\mathcal{L}_{\text{eff}} = M^{-2}C_A^l(\bar{s}\gamma^{\mu}\gamma_5c)(\bar{\mathbf{v}}_L\gamma_{\mu}l_L) + M^{-2}C_P^l(\bar{s}\gamma_5c)(\bar{\mathbf{v}}_Ll_R)$$

$$- M^{-2}C_V^l(\bar{s}\gamma^{\mu}c)(\bar{\mathbf{v}}_L\gamma_{\mu}l_L) + M^{-2}C_S^l(\bar{s}c)(\bar{\mathbf{v}}_Ll_R)$$

$$+ M^{-2}C_T^l(\bar{s}\sigma^{\mu\nu}c)(\bar{\mathbf{v}}_L\sigma_{\mu\nu}l_R)$$

with left-handed neutrinos only.

• First two: leptonic; last three: semileptonic.

- Because V_{cs} has a small imaginary part (in PDG parametrization), to explain the effect one of C_A , C_P must be real and positive.
- To reduce each effect to 1σ ,

$$\frac{M}{(\operatorname{Re} C_A^{\ell})^{1/2}} \lesssim \begin{cases} 710 \text{ GeV for } \ell = \tau \\ 850 \text{ GeV for } \ell = \mu \end{cases},$$

$$\frac{M}{(\operatorname{Re} C_P^{\ell})^{1/2}} \lesssim \begin{cases} 920 \text{ GeV for } \ell = \tau \\ 4500 \text{ GeV for } \ell = \mu \end{cases}.$$

New Particles

• The effective interactions can be induced by heavy particles of charge +1, +2/3, -1/3.

• Charged Higgs, new W'; leptoquarks.

Leptonic Decay

• In the amplitude, replace

$$G_F V_{cs}^* m_l o G_F V_{cs}^* m_l + rac{1}{\sqrt{2}M^2} \left(C_A^l m_l + rac{C_P^l m_{D_s}^2}{m_c + m_s} \right)$$

so C_A can be l independent and still cause the same shift in both modes.

W'

- Contributes only to C_A and C_V .
- New gauge symmetry, but couplings to lefthanded leptons constrained by other data.
- If W and W' mix, electroweak data imply it's too weak to affect $D_s \rightarrow l\nu$.
- Seems unlikely, barring contrived, finely tuned scenarios.

Charged Higgs

Multi-Higgs models include Yukawa terms

$$y_c \bar{c}_R s_L H^+ + y_s \bar{c}_L s_R H^+ + y_\ell \bar{\mathbf{v}}_L^\ell \ell_R H^+ + \text{H.c.},$$

(mass-eigenstate basis) leading to

$$C_{P,S}^{\ell} = \frac{1}{2} (y_c^* \mp y_s^*) y_{\ell}, \qquad M = M_{H^{\pm}}$$

 $\propto V_{cs}^* (m_c \mp m_s \tan^2 \beta) m_{\ell} \quad \text{in Model II}$

• Note that $C_{P,S}$ can have either sign.

- But consider a two-Higgs-doublet model
 - one for c, u, l, with VEV 2 GeV or so;
 - other for d, s, b, t, with VEV 245 GeV.
- No FCNC; CKM suppression.
- Need to look at one-loop FCNCs.
- Naturally has same-sized increase for μ & τ .

• This model predicts a similarly-sized deviation in $D \rightarrow lv$, so it is now disfavored:

Leptoquarks

- Color triplet, scalar doublet with Y = +7/6 has a component with charge Q = +2/3.
- Dobrescu and Fox use this in a new theory of fermion masses [arXiv:0805.0822].
- Leads to $C_A = C_V = 0$, $C_P = C_S = 4C_T$ of any phase, and no connection between μ & τ .
- LFV $\tau \rightarrow \mu s\bar{s}$ disfavors this.

• LFV $\tau \to \mu s\bar{s}$ disfavors any leptoquark with a charge +2/3 component:

•
$$J = 1, (3, 3, +2/3)$$
 and $(3, 1, +2/3)$

Way out: two leptoquarks, little mixing.

• But J = 0, (3, 1, -1/3) seems promising:

$$\kappa_{\ell}(\bar{c}_{L}\ell_{L}^{c}-\bar{s}_{L}\nu_{L}^{\ell c})\tilde{d}+\kappa_{\ell}'\bar{c}_{R}\ell_{R}^{c}\tilde{d}+\text{H.c.}$$

(an interaction in R-violating SUSY), with

$$C_A^\ell = C_V^\ell = rac{1}{4} |\kappa_\ell|^2$$
 $C_P^\ell = C_S^\ell = rac{1}{4} \kappa_\ell \kappa_\ell'^* = -2C_T^\ell$

• If $|\kappa'_{\ell}/\kappa_{\ell}| \ll m_{\ell}m_c/m_{D_s}^2$, then automatically the interference is constructive and creates the same per-cent deviation for $\mu\nu$ and $\tau\nu$.

Semileptonic Decay

$$\frac{d\Gamma}{dq^{2}} = \frac{m_{D}^{3}}{192\pi^{2}} \left\{ PS_{++} |f_{+}(q^{2})|^{2} \left| G_{F}V_{cs} + \frac{C_{V}}{\sqrt{2}M^{2}} \right|^{2} \right. \\
+ PS_{00} |f_{0}(q^{2})|^{2} \left| \frac{m_{\mu}}{m_{D}} \left(G_{F}V_{cs} + \frac{C_{V}}{\sqrt{2}M^{2}} \right) + \frac{q^{2}}{m_{D}(m_{c} - m_{s})} \frac{C_{S}}{\sqrt{2}M^{2}} \right|^{2} \\
- PS_{T+}B_{T}(q^{2})f_{+}(q^{2}) \frac{m_{\mu}}{4m_{D}} \operatorname{Re} \left[\left(G_{F}V_{cs} + \frac{C_{V}}{\sqrt{2}M^{2}} \right) \frac{C_{T}^{*}}{\sqrt{2}M^{2}} \right] \\
- PS_{T0}B_{T}(q^{2})f_{0}(q^{2}) \frac{m_{\mu}}{4m_{D}} \operatorname{Re} \left[\left(G_{F}V_{cs} + \frac{C_{V}}{\sqrt{2}M^{2}} \right) \frac{C_{T}^{*}}{\sqrt{2}M^{2}} \right] \right\}$$

• C_V causes an effect comparable to $l\nu$, but C_S and C_T could hide: $m_\mu/m_D=0.057$

Measuring $D \rightarrow K\mu\nu$

- Effective couplings in semileptonic and leptonic decays are related.
- Observing SM rate for $D \to K\mu\nu$ would favor shift via C_P , w/ C_S & C_T shifts hiding.
- For leptoquarks implies the Yukawa matrix is "just so," to give $D \rightarrow \mu\nu$ & $D \rightarrow \tau\nu$.

• Observing excess in $D \rightarrow K\mu\nu$ would favor model with naturally same-sized effects in $D_s \rightarrow \mu\nu$, $\tau\nu$.

Current status:

$$f_{+}(0) = 0.765(9)$$
 [CLEO]
 $f_{+}(0) = 0.727(13)$ [BaBar]
 $f_{+}(0) = 0.695(23)$ [Belle]
 $f_{+}(0) = 0.747(7)$ [expt. avg.]
 $f_{+}(0) = 0.73(8)$ [Fermilab/MILC]

Leptoquarks

- Leptoquarks come with Yukawa matrices:
 - ullet no relation between c and b couplings;
 - aesthetically unappealing.
- If a signal is real, aesthetics are a secondary problem.
- If coupling to 1st generation is small, these leptoquarks evade Tevatron bounds.

LHC

- The generic bounds on mass/coupling suggest that any non-Standard explanation of the effect is observable at the LHC.
- Charged Higgs: similar to usual search.
- Leptoquarks: $gg \to \tilde{d}\tilde{d} \to \ell_1^+\ell_2^- j_c j_c$, where leptons are μ or τ .

Perspective

- The f_{Ds} puzzle is intriguing.
- More calculations of f_{Ds} and form factors $(f_+, f_0, \text{ and } B_T)$ needed—
 - with $n_f = 2+1$ or 2+1+1.
- CLEO has more data to analyze.
- BES just started: $D \& D_s$ after ψ runs.